

人 こけきこと What You Know

Display each set of data in a line plot.

T	hird-Grad	le Shoe Siz	ze
Jose	Ana	Julia	Martin
2	4	8	3
Lin	Tanya	Ronaldo	Cheye
6	5	3	4
William	Cole	Nat	Gabriel
4	5	4	5

For Exercises 3 and 4, use the line plot below.

3. How many student's quiz scores are recorded? Explain.

> 4. What is one conclusion you can draw from this line plot? Explain.

Share and Show MATH SORD MATH'S school is having a walk-a-thon to raise money for the school library. Matt made a picture graph to show the number of miles some students walked. Make a bar graph of Matt's data. Use a scale of 0, and mark	School Walk-a-Thon Sam ** ** ** ** Matt ** ** * Ben ** Erica ** ** **
the scale by	454
	237
Use your bar graph for 1-4. 1. Which student walked the most miles? Think: Which student's bar is the tallest? 2. How many more miles would Matt have had to walk to equal the number of miles Erica walked?	Apply How would the graph have to change if another student, Daniel, walked double the number of miles Erica walked?
 Ja. How many miles did the students walk? 4. Write the number of miles the students walked in order from greatest to least. 	

Objective Identify values of digits in numbers to 9,999.

Learn About It

When the Space Shuttle returns to Earth, it gets very hot. That is why the shuttle is made of materials that can stand temperatures of more than 2,390°F!

A place-value chart can help explain what this number means.

thousands	hundreds	tens	ones
2	3	9	0

The value of The value of The value of The value of the 2 is 2,000. the 3 is 300. the 9 is 90. the 0 is 0.

There are different ways to write 2,390.

Different Ways to Write a Number				
You can use standard form.	2,390			
You can use expanded form.	2,000 + 300 + 90			
You can use word form.	two thousand, three hundred ninety			

Guided Practice

Write each number in two other ways. Use standard form, expanded form, and word form.

- **1.** 1,000 + 700 + 8 **2.** seven thousand, thirty-six
- 2,039

とうりゅうりゅうからしゅう

4. four thousand, one hundred five

Ask Yourself

- · What is the value of each digit in the number?
- Do any places have zeros?

Explain Your Thinking In what ways are 2,390 and 3,290 similar? In what ways are they different?

MAIN IDEA

I will use arrays to multiply.

Standard 3AF1.5 Recognize and use the Commutative and Associative Properties of Multiplication (e.g., if $5 \times 7 = 35$, then what is 7×5 ? and if $5 \times 7 \times 3 = 105$, then what is $7 \times 3 \times 5$?).

New Vocabulary

array

Commutative Property of Multiplication

Roberto places party cups on a table in 3 rows of 5 cups each. How many cups are there on the table?

The cups are arranged in equal rows and equal columns. This arrangement is an **array**.

Real-World EXAMPLES Use an Array

O PARTY CUPS How many cups are on the table?

To find the total number of cups, you can use addition or multiplication. There are 3 rows with 5 cups in each row.

One Way: Add	Another Way: Multiply
5 + 5 + 5 = I5	3 × 5 = 15

So, 3 equal groups of 5 cups is 15 in all.

Proof How many eggs are in a carton of eggs?

To find the total number in the array of eggs, you can write a multiplication sentence.

$$2 \times 6 = 12$$

So, 2 rows of 6 eggs is 12.

Share and Show

1. Complete. Use the array.

____ rows of ____ = ____

____× __ = ____

Write a multiplication sentence for the array.

₫ 2.

On Your Own

Write a multiplication sentence for the array.

4.

Draw an array to find the product.

6. $3 \times 6 =$

7.
$$4 \times 7 =$$

Write a multiplication sentence for the array.

1.

3000

$$3 \times 7 = 21$$

$$2 \times 5 = \underline{\hspace{1cm}}$$

Draw an array to find the product.

3.
$$4 \times 2 = ____$$

4.
$$2 \times 8 =$$

Multiply by 0 and 1

to Learn

There are 4 daisies in 1 flower pot. How many daisies are there in all?

MAIN IDEA

I will multiply by 0 and 1.

New Vocabulary

Zero Property of Multiplication **Identity Property** of Multiplication

There are special properties for multiplying by 1 and 0.

KEY CONCEPT

Multiplication Properties

Words The Identity Property of Multiplication

> says that when any number is multiplied by 1, the product is that number.

Example
$$1 \times 4 = 4$$
 One group of 4 is 4.

Words The Zero Property of Multiplication

says that when you multiply a number

by 0, the product is zero.

Examples
$$3 \times 0 = 0$$
 Three groups of 0 are 0.

८₭ What You Know

Multiply.

5. There is 1 student sitting at each of the 9 tables in the cafeteria. How many students are there altogether?

Memorize to automaticity the multiplication table for numbers between 1 and 10. Standard 3MR2.3 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

×	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	12	14	16	18	20
3	0	3	6	9	12	15	18	21	24	27	30
4	0	4	8	12	16	20	24	28	32	36	40
5	0	5	10	15	20	25	30	35	40	45	50
6	0	6	12	18	24	30	36	42	48	54	60
7	0	7	14	21	28	35	42	49	56	63	70
8	0	8	16	24	32	40	48	56	64	72	80
9	0	9	18	27	36	45	54	63	72	81	90
10	0	10	20	30	40	50	60	70	80	90	100

There are different ways you can find products.

Real-World EXAMPLE Use an Array

PETS There are 3 dogs. Each dog buried 4 bones in a yard. How many bones are buried in the yard?

You can use an array to find 3 groups of 4 bones or 3×4 .

So, there are 12 bones buried in the yard.

21. WRITE Math Explain how you would use the Commutative Property of Multiplication to answer 7×3 .

Set A

Write a multiplication sentence for each array.

Find each product.

Set C

Multiply.

Set D

Find each product.

Set E

Multiply.

Set F

Find each product.

2.
$$0 \times 1$$

3.
$$1 \times 4$$

4.
$$3 \times 0$$

5.
$$7 \times 1$$

A.M. is used for the hours 12 midnight (12 A.M.) until 12 noon.

603663693693

11:00 A.M.

P.M. is used for the hours 12 noon (12 P.M.) to 12 midnight. 11:00 P.M.

- 5. A game starts at 4:30 P.M. It ends at 6:00 P.M.
- A movie starts at 7:30 P.M. It ends at 8:45 P.M.
- 6. A phone call starts at 11:05 A.M. It ends at 11:17 A.M.
- A meeting starts at 11:30 A.M. It ends at 1:15 P.M.

Share and Show

1. Complete the related facts for this array.

$$2 \times 8 = 16$$

$$16 \div 2 = 8$$

Write the related facts for the array.

2.

₫3.

4.

5. Why do the related facts for the array in Exercise 2 have only two equations?

Write the related facts for the set of numbers.

7. 3, 8, 24

8, 6, 6, 36

Complete the related facts.

9.
$$4 \times 7 =$$

$$7 \times \underline{} = 28$$

$$28 \div = 4$$

$$28 \div 4 =$$

10.
$$5 \times _{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}} = 30$$

$$30 \div 6 =$$

$$30 \div 5 =$$

11.
$$--- \times 9 = 27$$

$$_{--} \times 3 = 27$$

$$= 9 = 3$$

A group of related facts using the same numbers is a fact family.

Fact Family for 3, 4, and 12 Fact Family for 7 and 49

$$3 \times 4 = 12$$

$$4 \times 3 = 12$$

$$12 \div 3 = 4$$

$$12 \div 4 = 3$$

$$7 \times 7 = 49$$
$$49 \div 7 = 7$$

EXAMPLE Write a Fact Family

$$3 \times 6 = 18$$

$$6 \times 3 = 18$$

$$18 \div 3 = 6$$

$$18 \div 6 = 3$$

Notice each fact uses the same three numbers.

What You Know

Use the array to complete each pair of number sentences.

1.
$$\blacksquare \times 5 = 15$$

Remember

numbers in a fact family can help you

remember related

Thinking about

facts.

$$\blacksquare \div 3 = 5$$

Write the fact family for each set of numbers.

3. 2, 6, 12

4. 4, 5, 20

5. 3, 9, 27

6. Gwen has 20 marbles and wants to divide them equally into 5 bags. How many bags will she need?

Use a number line to find the product. 1. $2 \times 40 = 80$ 10 20 30 40 50 60 70 80 90 100 110 120 **2.** $4 \times 30 =$ 10 30 40 50 60 70 20 80 90 100 110 120 130 140 Use place value to find the product. **4.** $60 \times 4 = ___tens \times 4$ = ____ tens = ____ = ____ tens = ____ Problem Solving **5.** One exhibit at the aquarium has **6.** In another aquarium display, there are 5 fish tanks. Each fish tank holds 40 fish in each of 7 large tanks. How 50 gallons of water. How much water many fish are in the display? do the 5 tanks hold? 300 C 7. WRITE Math Which strategy do you prefer to use to multiply with multiples of 10: base ten blocks, a number line, or place value? Explain why.

Find the product.

2.
$$60 \times 3 =$$

3.
$$_{---} = 60 \times 5$$

Find the product.

 \times 2

8.
$$6 \times 90 =$$
 9. $9 \times 70 =$ **10.** $8 \times 90 =$ **___**

9.
$$9 \times 70 =$$

10.
$$8 \times 90 =$$

Find the product. Use base-ten blocks or draw a quick picture on your MathBoard.

11.
$$8 \times 50 =$$
 ____ **12.** ___ = 3×90 **13.** $2 \times 80 =$ ____

12. ____ =
$$3 \times 90$$

13.
$$2 \times 80 =$$

Find the product.

Practice: Copy and Solve Find the product.

18.
$$6 \times 70$$

19.
$$9 \times 90$$

20.
$$70 \times 8$$

21.
$$90 \times 7$$

Another Nines Trick 0 Step 1: Make a column of numbers on your 1 paper from 0 through 9. 2 3 4 5 6 7 8 9 Step 2: Next to your column, you're going to 09 make another column of numbers. 18 This time, count backwards 2**7** from 9 all the way down to 0. 36 4 5 5 **4** 63 7 **2** 8 1 90 $09 = 9 \times 1$ Step 3: You've just written all the answers to $18 = 9 \times 2$ your nines times tables. Write the $27 = 9 \times 3$ $36 = 9 \times 4$ facts next to the numbers. $45 = 9 \times 5$ $54 = 9 \times 6$ $63 = 9 \times 7$ $72 = 9 \times 8$ $81 = 9 \times 9$ $90 = 9 \times 10$

